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Abstract. We analyze various microscopic calculations of vibrational frequencies for “Hey clusters, N = 3—
728. The lowest breathing frequency with total angular momentum J = 0 varies smoothly as a function of

N, with a maximum around N = 50-120.

PACS. 36.40.-c Atomic and molecular clusters — 67.40.Db Quantum statistical theory; ground state,
elementary excitations — 67.40.-w Boson degeneracy and superfluidity of *He

The calculation of excited state properties of many-body
systems is intrinsically more challenging than that of
ground state properties. However, only excited state prop-
erties are directly accessible experimentally and allow a
straightforward comparison between theory and experi-
ment. The determination of excitation frequencies of lig-
uid bulk *He, two-dimensional *He films and finite size
4Hen clusters has long been an area of active research.
This is primarily because excitations such as phonons, ro-
tons and vortices are a direct signature of superfluidity.
The superfluid phase of bulk “He (Refs. [1,2] and refer-
ences therein) and *He films [3-7] has been studied exten-
sively since the 1930s and 1970s, respectively. The study
of superfluidity of “Hen clusters, in contrast, started more
recently. Superfluidity of these finite size bosonic clusters
with more than N =~ 60 atoms has been established the-
oretically in 1989/90 [8,9], and six years later experimen-
tally [10,11]. (We omit the mass number (4) in the follow-
ing, and refer to *He as He.)

This paper focuses on the lowest vibrational frequency
(breathing/bulk mode) of bosonic Hey clusters, which has
been estimated in the literature using various microscopic
approximations [12-16]. These microscopic quantum me-
chanical studies of the lowest breathing mode of Hep
clusters with N = 3-728 have been performed using an
adiabatic approximation [12], an excitation operator ap-
proach [13-15], and a random phase approximation with a
phenomenological effective interaction [16]. Some of these
studies are based on solving the many-body Hamiltonian
at zero temperature by writing the many-body poten-
tial surface as a sum of two-body atom-atom potentials.
The microscopic frequency studies summarized in this pa-
per use a variety of different two-body potentials since
the He-He two-body potential has been “fine-tuned” re-
peatedly, mostly by Aziz and coworkers [17-19]. However,
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small differences of the energetics due to the usage of dif-
ferent two-body potentials are irrelevant for our purposes
in this paper.

The adiabatic approximation [12] treated Hey clus-
ters with up to N = 10 atoms, and only recently nar-
rowed the gap between “exact” basis set expansion cal-
culations for the trimer [20,21] and calculations for the
larger clusters with N = 20-728 [13-16]. A classical liquid
drop model [22] has been applied to even larger clusters,
connecting the lowest breathing mode of finite Hey clus-
ters with that of bulk He. We find that the compressional
excitation frequency Aiwg = E1 — Ey as a function of the
number of atoms N in the cluster follows a smooth be-
havior. Awp is small in the small and large NV limit, and
shows a distinct maximum around N = 50-120.

Figures 1 and 2 summarize the absolute value of the
ground state energy per particle, |Ey/N|, together with
the absolute value of the chemical potential, |u|, and the
lowest vibrational frequency, iwg = F1 — Fy, as a func-
tion of the number of atoms N in the cluster. Figure 1
shows these data, which are taken from various publica-
tions [12-16,23-25], on a linear N scale (N = 3-100),
whereas Figure 2 shows the same data on a N~1/3 scale
(N > 3). First, consider the absolute value of the ground
state energy per particle, |Ey/N|. Eg/N can be calculated
efficiently wvia the diffusion Monte Carlo method, which
calculates the many-body ground state for a given po-
tential surface “essentially exactly” [26]. In many prob-
lems, the variational Monte Carlo method is adequate;
it minimizes the ground state energy for some assumed
functional form of the many-body wave function [26]. For
the larger clusters, the ground state energy per particle,
Ey/N, can be fitted to high accuracy with a liquid drop
formula containing a volume, a surface and a curvature
term, Ey/N = F, + Esx + E.x?, where z = N~1/3 [15,22,
23]. Tt is this N~'/3 dependence that motivates our scale
of the abscissa in Figure 2.
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Fig. 1. Absolute value of the ground state energy per parti-
cle, |Eo/N]|, together with the absolute value of the chemical
potential, ||, and the lowest breathing mode hwo of Hen clus-
ters as a function of N. The data are collected from various
publications. Asterisks and a solid line indicate |Eo/N|, and
a dotted line indicates || [12,15,22]. The plus symbols show
the excitation energies calculated via an adiabatic approxima-
tion [12], the squares and triangles show energies calculated
via an excitation operator approach combined with the vari-
ational Monte Carlo method [13-15], while the crosses depict
calculations based on an excitation operator approach com-
bined with the diffusion Monte Carlo method [14,15]. The ab-
solute value of the ground state energy per particle for liquid
bulk He, |Eo(bulk)/N|, is indicated on the upper right corner
by a solid horizontal line.

Both figures, Figures 1 and 2, show the absolute value
of the resulting diffusion Monte Carlo ground state ener-
gies per particle, |Ey/N|, by asterisks for N = 3-10 [12].
For the larger clusters, we plot a fit to the liquid drop
formula rather than the many-body ground state energies
themselves (solid line) [15]. For comparison, a horizontal
solid line in the upper right corner indicates the absolute
value of the ground state energy per particle of bulk lig-
uid He, |Ey/N (bulk)| = 7.15 K. The absolute value of the
ground state energy per particle of bulk He is significantly
larger than that of the N = 728 cluster, indicating that
the energetics of clusters this large are still affected by
edge effects. In addition to |Ey/N|, Figures 1 and 2 also
show the absolute value of the chemical potential, |u|, de-
fined as the energy difference of a cluster with N and N —1
atoms, p = Fo(N) — Eo(N — 1), and calculated using the
liquid drop formula (dotted line).

Now consider the microscopic excitation frequency cal-
culations, which can be divided into three groups; the adi-
abatic hyperspherical approximation (N = 3-10) [12], the
excitation operator ansatz (N = 20-240) [13-15], and the
random phase approximation with a phenomenological ef-
fective interaction (N = 40-728) [16]. The key point of
the adiabatic approximation [27] (and references therein)
is the identification of an overall coordinate, the hyper-
spherical radius R, where R? o Y ,(r; — rem)?. Here, r;
denotes the Cartesian position vector of atom 4, and r¢y,
the center-of-mass vector of the cluster. Averaging over all
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Fig. 2. Absolute value of the ground state energy per parti-
cle, |Eo/N]|, together with the absolute value of the chemical
potential, ||, and the lowest breathing mode hwo of Hen clus-
ters as a function of N (on a N3 scale). These data are also
shown in Figure 1 for N < 100 (see caption of Fig. 1 for legend
of symbols). Additionally, diamonds show hwg calculated via a
random phase approximation with an effective phenomenolog-
ical interaction [16], and a dashed-dotted line calculated via a
classical liquid drop model [15,22].

degrees of freedom except for the hyperspherical radius co-
ordinate R results in an effective one-dimensional poten-
tial curve along R. The first excited state in this potential
curve then corresponds to the lowest breathing mode of
excitations. In its simplest implementation, the adiabatic
approximation neglects coupling between angular and ra-
dial degrees of freedom. Previous work has shown, how-
ever, that it is important for an appropriate description of
Hey clusters to include a diagonal coupling element (see
Ref. [12] for a detailed discussion). Figures 1 and 2 show
the results of this study, including the diagonal coupling
element in an appropriate manner, for N = 3-10 (pluses).

The basic idea of the second set of calculations [13-15],
namely the excitation operator approach, differs signifi-
cantly from the adiabatic approximation. In analogy to
the treatment of excitations in bulk He, the excitation op-
erator approach is based on a Feynman ansatz [28] for the
excited state wave function g, namely ¥p is written as
a product of the ground state wave function 1y and an
excitation operator F, where F' = ). f(r; — rem). This
ansatz allows one to calculate the excitation energies di-
rectly from the ground state static structure function of
the cluster by solving a generalized Feynman eigenvalue
problem via ground state Monte Carlo techniques [13-15].

Two research groups followed this approach. Rama
Krishna and Whaley [13] determined the He cluster
ground state densities using variational Monte Carlo
methods, and Chin and Krotscheck [14,15] using vari-
ational and diffusion Monte Carlo methods. The varia-
tional Monte Carlo calculation uses an energy optimized
trial wave function, and the extracted structural proper-
ties can therefore be biased. The diffusion Monte Carlo
calculation, in contrast, is limited only by the statistical
and extrapolation errors in sampling the exact one- and
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two-body ground state densities entering into the static
structure function. Figures 1 and 2 show the results based
on a variational Monte Carlo calculation (squares [13] and
triangles [14,15]), and based on diffusion Monte Carlo cal-
culations (crosses [14,15]). The overall agreement between
these calculations is reasonable, although, discrepancies of
up to 30% exist. These discrepancies are not surprising,
given that the calculations are performed for various dif-
ferent trial wave functions, and since they utilize different
minimization and/or orthogonalization schemes [13-15].

Now consider the third set of microscopic calculations
of the lowest breathing mode, the random phase approxi-
mation calculations [16]. Casas and Stringari solve the ran-
dom phase approximation equations for a phenomenologi-
cal effective interaction using an energy functional, whose
parameters are determined so that the experimental values
for the binding energy, saturation density, compressibility
parameter, and surface tension of bulk liquid *He at sat-
uration and zero temperature are reproduced [29]. Then,
the effective interaction depends on one coordinate only,
thereby reducing the numerical complexity of the ran-
dom phase equations enormously. Interestingly, it is con-
venient to solve the random phase approximation equa-
tions by calculating a response function corresponding to
a given excitation operator F'. For the symmetric compres-
sional mode, reference [16] chooses F' = >_, f(r;), where
f(r;) = r2. This excitation operator F is proportional to
the squared hyperradius R introduced above, except for a
center-of-mass offset that we believe should be negligible
in this case. Figures 1 and 2 summarize the results of this
study (diamonds).

For large clusters, N > 500, the lowest breathing mode
frequency can be estimated reliably within a classical lig-
uid drop model [22]. Within this model, fiwg is given by
the phonon dispersion relation hwy = ck. ¢ denotes the
velocity of sound, ¢ = 238 m/s, whereas k is fixed through
a boundary condition imposed by the requirement that
excess pressure cannot be maintained at a free surface,
Jo(krc) = 0. Here, jo denotes the lowest order Bessel func-
tion, and 7. = roN'/3 the radius of the cluster, where
ro = 2.22 A [25]. The lowest breathing mode is then given
by hwo = 25.6 N ~1/3 K [15]. Figure 2 shows this prediction
as a dashed-dotted line for N > 100.

In summary, the excitation frequency hwg of the low-
est breathing mode calculated via the adiabatic approx-
imation for N = 3 [20,30] agrees well with that from
a coupled channel calculation [20,21]. The frequency for
the clusters with N < 10 calculated wia the adiabatic
approximation [12] connect smoothly with the frequency
for the N = 20 cluster calculated wvia the excitation
operator approach [13]. While fw, increases monotoni-
cally with increasing N for N < 40, this quantity shows
some scattering around N = 40-240 (see also discussion
above). A maximum around N = 50-120, however, is
clearly recognizable. The frequencies for the N = 112
and N = 240 cluster calculated based on the excitation
operator ansatz [13-15] agree to better than 20% with
the frequencies calculated based on the random phase ap-
proximation with an effective phenomenological interac-

tion [16]. Furthermore, the random phase approximation
frequency of the largest cluster treated, N = 728, almost
coincides with that predicted by the classical liquid drop
model [22], which gives a good description for clusters with
N > 500. In short, the lowest breathing mode frequency
of Hey clusters is small in both the small and large NV
limits, and exhibits a maximum around N = 50-120.

The calculated values of hwy shown in Figures 1 and 2
are not new (see above, and also [15]). However, the very
recent calculations for small Hey clusters, N < 10 [12],
help to complete the picture that had emerged from the
earlier calculations, in that the breathing mode has now
been calculated for the whole range of cluster sizes, namely
from the He trimer to bulk He.

Chin and Krotscheck [15] interpreted the behavior of
fwg as a function of N through the classical liquid drop
model equation Awg = ck, as follows. For small NV, the in-
terior density of a cluster increases as a function of IV, and
therefore also the compressibility bcomp and the speed of

sound ¢, ¢ = y/beomp/m [22] (m, mass of He atom). Even
though k decreases with increasing IV, overall the increase

in ¢ is larger than the decrease in k, leading to an increase
of the breathing excitation frequency with increasing N
(for N < 50-120). For large N, N > 112, the interior den-
sity is approximately constant [23], as are also beomp and
¢, to lowest order. An increase in cluster size then leads
to a decrease of the wave vector k of the excitation, and
therefore to an decrease of the breathing excitation.

Note that the “turn-around” region of the hwg curve,
around N = 50-120, coincides with the onset of superflu-
idity of Hen clusters, N ~ 60. We can now ask whether
a connection exists between the studies summarized here
and the superfluid nature of He clusters with more than
N = 60 atoms, i.e., their phonon-roton dispersion curve.
To begin with, recall that the roton minimum of bulk He
occurs at a wave length k& = 1.93 A~! with energy F =
8.65 K. This minimum roton energy is somewhat larger
than the heat of evaporation, —Fy/N (bulk) = 7.15 K, and
the roton evidently has metastable character. We specu-
late that the roton of a bosonic Hepy cluster with about
N > 60 may be described within the adiabatic approxi-
mation by a higher lying adiabatic potential curve with
total angular momentum J = 0, which describes an exci-
tation of two small rotating subunits, each with some non-
zero internal angular momentum j (see also Ref. [31]). In
this picture, the metastability could arise from an avoided
crossing between the lowest J = 0 potential curve and one
or more excited J = 0 potential curves, or from a poten-
tial barrier of a J = 0 potential curve, which separates the
“roton state” from a second minimum at smaller hyperra-
dius R. This qualitative picture seems to be in agreement
with recent calculations of the velocity field in the region
of the roton minimum for bulk He [32,33]. However, more
calculations are needed to refine and test these ideas in
detail.
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